
Übungsaufgaben

Druck in Flüssigkeiten und Gasen

- 1. In einem Kolbenprober (Glasspritze) ist eine Luftmenge eingeschlossen. Der Luftdruck dieser Luftmenge ist zunächst gleich dem äußeren Luftdruck $p_{amb} = 1,00$ bar. Die Querschnittsfläche des Kolbens beträgt A = 5,00 cm². Nun wird der Kolben soweit in den Zylinder geschoben, bis der Luftdruck p_e der eingeschlossenen Luftmenge um 2,20 bar größer ist als der äußere Luftdruck p_{amb} .
 - a) Mit welcher Kraft F₁ wirkt die eingeschlossene Luftmenge auf den Kolben?
 - b) Mit welcher Kraft F2 wirkt die Außenluft auf den Kolben?
 - c) Mit welcher Kraft F₃ muss also zusätzlich zur Kraft F₂ der gedrückte Kolben gehalten werden ?
- 2. In einem Autoreifen beträgt der Luftdruck $p_e = 2,80$ bar. Der äußere Luftdruck ist $p_{amb} = 1,02$ bar. Berechne die Kräfte F_i und F_a , mit welcher die Luft von innen und von außen auf ein Reifenstück der Fläche A = 4 cm² drückt !
- 3. Bei einer hydraulischen Presse wird auf den Pumpenkolben die Kraft $F_1 = 150 \text{ N}$ ausgeübt. Der Pumpenkolben hat die Querschnittsfläche $A_1 = 4 \text{ cm}^2$; der Presskolben hat die Querschnittsfläche $A_2 = 60 \text{ cm}^2$.
 - a) Mit welcher Kraft F₂ presst der Presskolben, wenn von Reibungskräften abgesehen wird ?
 - b) Der Pumpenkolben wird die Strecke $s_1 = 6$ cm in seinen Zylinder hineingeschoben. Um welche Strecke s_2 bewegt sich dabei der Presskolben?
- 4. Zwei Kolbenprober mit verschieden großen Querschittsflächen werden wie in der Abbildung miteinander verbunden. Dann wird Gas aus einer Pressluftflasche zugeleitet.
 Was passiert dabei ? (Begründung)

- 5. Der Pumpenkolben einer hydraulischen Presse hat eine Querschnittsfläche von 20 cm²; der Presskolben hat eine Querschnittsfläche von 2 m². Die Masse der zu hebenden Last beträgt 300 kg. Die Gewichtskräfte der Kolben sind zu vernachlässigen.
 - a) Mit welcher Kraft muss man den Pumpenkolben nach unten bewegen (ohne Berücksichtigung von Reibungsverlusten) ?
 - b) Der Pumpenkolben wird jeweils mit einer 40 cm hohen Flüssigkeitssäule gefüllt. Um welche Strecke hebt sich der Presskolben, wenn man den Pumpenkolben 200 mal ganz leer pumpt?

Übungsaufgaben

Druck in Flüssigkeiten und Gasen

- 6. In einer Kfz-Werkstatt soll ein Pkw mit Hilfe einer hydraulischen Presse gehoben werden. Der Pumpenkolben dieser Presse hat die Querschnittsfläche $A_1 = 10 \text{ cm}^2$; der Presskolben hat die Querschnittsfläche $A_2 = 10 \text{ dm}^2$. Die Gewichtskraft des vertikal stehenden Presskolbens und des darauf gesetzten Pkw beträgt insgesamt $F_2 = 18 \text{ kN}$.
 - a) Es soll zunächst von Reibungskräften abgesehen werden.
 Berechne die Kraft F_{1,a}, die am Pumpenkolben aufgewendet werden muss!
 - b) Im praktischen Fall muss wegen der Reibung am Pumpenkolben eine Kraft $F_{1,b}$ aufgewendet werden, die um 20% größer ist als die Kraft $F_{1,a}$. Berechne die Kraft $F_{1,b}$!
 - c) Bei jedem Hub des Pumpenkolbens drückt dieser V = 360 cm³ Öl aus einem Vorratsbehälter in die hydraulische Presse.
 Um welche Höhe h wird dabei der Pkw gehoben ?
 - d) Insgesamt soll der Pkw um die Höhe H = 1,8 m gehoben werden.
 Wie groß ist die Anzahl n der dazu erforderlichen Hübe des Pumpenkolbens ?
- 7. Der Pumpenkolben einer hydraulischen Presse wird mit der Kraft $F_1 = 180$ N die Strecke $s_1 = 30$ cm in seinen Zylinder hineingedrückt. Der Presskolben verschiebt sich dabei in seinem Zylinder um $s_2 = 1,5$ cm. Der Vorgang verläuft reibungsfrei.
 - a) Berechne die Kraft F₂, die der Presskolben während der Verschiebung ausübt!
 - b) Die Querschnittsfläche des Pumpenkolbens ist A₁; die Querschnittsfläche des Presskolbens ist A₂. Berechne das Verhältnis A₁: A₂ der Querschnittsflächen!

Übungsaufgaben

Druck in Flüssigkeiten und Gasen

Literatur (Quellen) soweit bekannt:

Höfling O. Physikaufgaben Sekundarstufe I 16. Aufl., 1985; S. 30, 31

Ferd. Dümmlers Verlag, Bonn