
2. Physikschulaufgabe

Klasse 11

1. Bewegung von Positronen im Magnetfeld

Durch einen kleinen Spalt gelangen Positronen e^+ unterschiedlicher Geschwindigkeit in ein Magnetfeld \vec{B} der Flussdichte $B=0,35\,T$, wo sie auf einer halbkreisförmigen Bahn mit dem Krümmungsradius r abgelenkt werden. Nach Durchlaufen ihrer Bahn im Magnetfeld treffen Sie zur Auswertung auf eine Fotoschicht oder auf eine Zähleinrichtung. Der Versuch wird unter Vakuum durchgeführt.

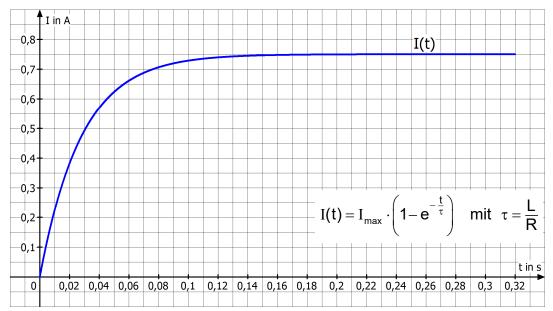


- a) Unter welchen Voraussetzungen bewegen sich die Positronen auf der skizzierten Kreisbahn?
- b) In einem Modellversuch sollen Positronen mit der kinetischen Energie $E_{\text{kin}} = 0,65\,\text{MeV}$ durch den Spalt treten. Berechnen Sie relativistisch die Geschwindigkeit und die Masse dieser Positronen in Vielfachen der Ruhemasse, sowie den Bahnradius r.

2. Feld- und Induktionsspule

Eine Induktionsspule (500 Windungen, Länge 20 cm, Fläche 30 cm 2) liegt koaxial in einer Feldspule (800 Windungen, Länge 60 cm, Fläche 80 cm 2). Der Gleichstrom in der Feldspule wird durch ein programmierbares Netzgerät vorgegeben (siehe t-I – Diagramm unten).

Berechnen Sie für das jeweilige Intervall die Induktionsspannung und erstellen Sie mit diesen Werten ein entsprechendes t-U-Diagramm.



2. Physikschulaufgabe

Klasse 11

3. Einschaltvorgang bei einer Spule

Ein Gleichspannungsnetzgerät ist über einen Schalter an eine Spule angeschlossen. Die Spannung am Netzgerät ist konstant $U_0 = 12 \text{ V}$. Mit einem Strommessgerät wird der Strom nach dem Einschalten (t = 0) gemessen (siehe Diagramm).

- a) Erklären Sie, warum die maximale Stromstärke in der Spule nicht sofort erreicht wird, sondern verzögert ansteigt.
- b) Bestimmen Sie den ohmschen Widerstand R_L der Kupferdrahtwicklung (wird als Konstante angesehen).
- c) Ermitteln Sie die Selbstinduktionsspannung U_i für den Zeitpunkt t = 0.05 s.
- d) Berechnen Sie die Induktivität L der Spule.
- e) Ermitteln Sie die Stromänderung bezüglich des Zeitpunktes t = 0,05 s.
- f) Berechnen Sie die Selbstinduktionsspannung U_i für den Zeitpunkt t = 0.05 s auf Grundlage der Ergebnisse aus d) und e).

4. Rechenakrobatik mit Spulen

Eine zylinderförmige, leere Spule 1 hat einen Durchmesser von 3,6 cm. Wie groß muss der Durchmesser einer Spule 2 gleicher Länge sein, wenn sie mit der halben Stromstärke einen um 25% stärkeren magn. Fluss erzeugen soll? Die Windungszahlen beider Spulen seien gleich.